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1 Introduction

Understanding the information encoded in the em-
bedding space for word representations in neural
machine learning models is an important task for
model interpretability and extensibility. Structural
probes are models that attempt to uncover syntactic
tree representations in linear transformations of the
neural embeddings (Hewitt and Manning, 2019).
This paper attempts to reproduce the work on or-
thogonally constrained structural probes by Lim-
isiewicz and Mareček (2021). The ultimate goal is
to determine whether a linear transformation of the
embedding can be learned such that the resulting
projection can inform the structure of dependency
trees and lexical hypernymy through embedding
distances. Furthermore, the original paper explores
whether the word embedding vector norm after the
linear transformation can inform absolute word po-
sition in a sentence. The original paper claims that
the addition of orthogonal constraints on the lin-
ear transformation makes the structural probe less
susceptible to memorization during training.

2 Scope of reproducibility

In our experiment, we will run several orthogonally
constrained structural probes to predict the lexical,
positional, random, and dependency depths and dis-
tances on the Universal Dependencies English Web
Treebank dataset. The lexical hypernymy task also
utilizes the WordNet tree (Miller, 1995). The ex-
periments will probe the English BERT large case
model (Devlin et al., 2019). We will focus on repli-
cating the results of the paper for the specific layers
identified by the paper as achieving the optimal
results on the model for a particular training config-
uration. The baseline used in the evaluation is the
traditional structural probe (Hewitt and Manning,
2019).

Orthogonal structural probes reveal a nearly

equivalent Spearman’s rank correlation on the de-
pendency, lexical hypernymy, and position in a
sentence depth and distance tasks when compared
to the traditional structural probes on the English
BERT large case model (Devlin et al., 2019). We
will verify that introducing orthogonal constraints
on the probe does not sacrifice the probe’s perfor-
mance relative to an unconstrained probe.

The correlation for random structures (depths
and distances) is weak across the board which im-
plies that orthogonal structural probes do not mem-
orize training data structures but rather infer them
from the embedding. We will verify that the corre-
lation on the random tree depths and distances is
lower on the orthogonally constrained probe than
on the traditional probe, thus implying the con-
straint curbs memorization.

Training with joint objectives results in lower
correlations for all configurations while yielding
higher selectivity1.

Additionally, the BERT subspace encoding lin-
guistic hypernymy does not overlap with the sub-
pspace encoding the dependency and position in
a sentence information. We will verify that the
subspace dimensions do not overlap.

2.1 Addressed claims from the original paper

We will test the following claims made by the orig-
inal paper

• Orthogonal structural probes achieve equiv-
alent results to structural probes on the de-
pendency, lexical, and position in sentence
objectives.

• Orthogonal structural probes are less prone
to memorization than structural probes as in-

1selectivity score is defined as the difference between per-
formance on the random trees and the average dependency,
lexical, position in a sentence correlations
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Figure 1: Comparison of the Structural Probe of (He-
witt and Manning, 2019) and the Orthogonal Structural
Probe proposed by (Limisiewicz and Mareček, 2021).

formed by the lower Spearman’s rank correla-
tion on randomly generated trees.

• BERT subspace encoding linguistic hyper-
nymy is separate from subspace encoding de-
pendency and position in sentence implying
representations are orthogonal in the embed-
ding space.

3 Methodology

We examine both the Structural Probe proposed by
(Hewitt and Manning, 2019) and the new Orthogo-
nal Structural Probe proposed by (Limisiewicz and
Mareček, 2021). The Figure 1 shows a comparison
between the two approaches. We try to replicate the
results of Orthogonal Structural Probe and verify
the claims made by original authors. Additionally,
we perform ablation studies by including new dis-
tance and correlation metrics to train and evaluate
the models respectively.

3.1 Model descriptions

The author in the original paper optimizes the Or-
thogonal Structural Probes over distance and depth
probes in several types of structures: dependency,
lexical hypernymy, position in a sentence, and ran-
domly generated trees. The distance is calculated
between pairs of words and the depth of a word is
calculated from the root of the tree. The follow-
ing descriptions of the tasks are directly referenced

from the original paper (Limisiewicz and Mareček,
2021):

Syntactic Dependency: The syntactic structure
in the Universal Dependencies parse trees which
are annotated in English Web Treebank dataset.

Lexical Hypernymy: The hypernymy tree ref-
erenced from WordNet (Miller, 1995). The author
considered lexical distances between pairs of nouns
and pairs of verbs in sentences and lexical depth
for each noun and verb.

Position in a Sentence: Given a sentence, the
depth is the index of a word and the distance is the
difference between the indices of pairs of words.

Random Structures: A randomly generated
tree from the words in the sentence. This structure
acts as a control that will reveal any memorization
during training. We expect to get low correlations
on the random tree since there is no coherent struc-
ture we should reasonably uncover.

If hi, hj are the word vectors at positions i and
j in a sentence, then the tree distance is approxi-
mated by the squared norm of the differences be-
tween the transformed vectors shown in Equation
1 where V is the orthogonal matrix and d is the
scaling vector formed by performing single value
decomposition of the transformation matrix used
in Structural Probe.

dL(hi, hj)
2 = ∥d̄⊙ V T (hi − hj)∥2d̄V T (1)

To approximate a word’s depth in a dependency
tree from its syntactic root, we use the squared
norm of the word vector hi i.e., ∥hi∥2d̄V T .

The author of the original paper uses squared
L2-norm for distance and depth probes, but we try
using different norms and analyse their results in
Section 4.

The final training loss for Orthogonal Distance
Probe and Orthogonal Depth Probe shown in Equa-
tions 2 and 3 respectively are normalized by the
prediction count in a sentence and averaged across
a batch. We use two regularization terms: Double
Soft Orthogonality Regularization (DSO) (Bansal
et al., 2018) of the orthogonal matrix V and L1-
norm sparsity regularization of the scaling vector
d.

Lo,dist. =
1

s2

∑
i,j

|dT (ωi, ωj)− dd̄oV T (hi, hj)
2|

+ λoDSO(V ) + λS∥d̄∥1
(2)
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∑
i

|∥ωi∥T − ∥hi∥2d̄oV T |

+ λoDSO(V ) + λS∥d̄∥1
(3)

We use the pretrained 24-layered English BERT
large case model (Devlin et al., 2019) provided
through HuggingFace (Wolf et al., 2020) to train
our probes on top of each layer. We optimize the
distance and depth probe on several structures as
explained earlier.

The number of parameters in the Orthogonal
Structural Probe for BERT Large for all eight ob-
jectives are 1, 056, 768. The details for this calcula-
tion can be found in the original paper (Limisiewicz
and Mareček, 2021).

3.2 Data descriptions
The dataset is downloaded from Universal Depen-
dencies English Web Treebank2 (Silveira et al.,
2014). This will be used as our gold standard cor-
pus which is constructed with the original English
Web Treebank LDC2021T133. The corpus is in
CoNLL-U format4 defined for Universal Dependen-
cies. In total, the dataset provides 16,622 annotated
sentences with train (12,543), validation (2,002),
and test (2,077) partitions. This information covers
five topics of internet content that include weblogs,
newsgroups, emails, reviews, and Yahoo! answers.

3.3 Hyperparameters
We use the same hyperparameters as the author
of the original paper (Limisiewicz and Mareček,
2021) mentioned in their paper and code in order
to replicate the results. The publicly released code
contained additional hyperparameters that were not
specified in the paper. In these instances, we did
our best to determine which configurations were
used. We detail this issue further in Section 5.2.

The original paper uses a batch size of 12 and a
decaying learning rate with an early stopping mech-
anism starting with an initial learning rate of 0.02.
The learning rate is divided by 10 when the valida-
tion loss does not decrease after an epoch. Training
is stopped when three consecutive learning rate up-
dates do not result in a smaller loss. Orthogonal

2The dataset is available at https://github.com/
UniversalDependencies/UD_English-EWT

3https://catalog.ldc.upenn.edu/
LDC2012T13

4https://universaldependencies.org/
docs/format.html

Library Version
numpy 1.19.5
tensorflow 2.4.1
tensorflow-hub 0.8.0
transformers 4.3.2
tqdm 4.46.0
unidecode 1.1.1
nltk 3.5
networkx 2.5
pytest 6.1.2
ufal.chu-liu-edmonds 1.0.1

Table 1: Python libraries used in the code

Regularization (λO) is set to 0.05 and Sparsity Reg-
ularization (λS) is set to 0 by default to replicate
the results.

3.4 Implementation

We extend the code provided by the authors of
the original paper5 to include our ablation studies.
The code is written in Python programming
language and Table 1 shows the packages used
in the implementation in addition to specific
versions. The extended code is available at
https://github.com/hiteshpindikanti/

OrthogonalTransformerProbing.

3.5 Experimental setup

We run our experiments on high-performing
computing cluster: Discovery, provided by the
USC’s Center for Advanced Research Comput-
ing (CARC). Discovery provides multiple resource
configurations to run our experiments including
NVIDIA Tesla K40, V100, A100, A40 GPUs.

3.6 Computational requirements

The authors of the original paper trained the Orthog-
onal Structural Probes on a GeForce GTX 1080 Ti
GPU where as we used the NVIDIA A40 GPU with
16GB RAM and 2 cpu-per-task. The difference in
the runtimes is shown in Table 2

We observe higher runtimes than what author of
the original paper has claimed. We suspect that the
reason is due to the difference in the GPU hardware
and the CUDA versions that created a difference in
the Tensorflow optimizations. NVIDIA A40 GPU
is relatively old hardware with an older CUDA ver-
sion which was difficult to configure for current

5https://github.com/Tom556/
OrthogonalTransformerProbing
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Task Original
Time

Replication
Time

Probing for depth 3 mins 5 mins
Probing for distance 5 mins 10 mins
Joint probing for distance
and depth in the same
structure type

7 mins 12 mins

Joint probing for depths
in all structures

13 mins 20 mins

Joint probing for distance
in all structures

18 mins 30 mins

Probing for all objectives 35 mins 60 mins

Table 2: Difference in Runtimes of original author’s
claim and our replication runtimes. Note that we ran
some tasks just to verify the runtimes, and not all the
tasks come under our scope of reproducibility

version of Tensorflow. We also see a relatively sim-
ilar trends in the runtimes with respect to various
tasks in author’s experiments and our replication
experiments.

Since the max runtime for any experiment is
around an hour, this made it feasible to run multiple
experiments and ablations by scheduling multiple
jobs to be run parallel. On average, it took 17± 2
seconds to run an epoch. Similar to the original
paper, we ran the experiments six times to yield
an average metric scores for all the objectives. Ad-
ditionally, we ran about one experiment of all the
eight objectives for each of the 24 layers of BERT
and six more trials for our ablation experiments.
Overall we approximately used 40 GPU hours to
run all experiments and tests.

4 Results

We ran experiments with identical hyperparameters
as the original paper described in Section 3.3 to
reproduce the author’s results. We calculate the
Spearman’s correlations between predicted values
and gold tree depths and distances and compare
our reproduced results with the author’s claimed
results in Table 3.

We verify the claims made my the author of
the original paper mentioned in Section 2.1 in the
following subsections:

4.1 Results Closeness with Structural Probes
The original paper claims that the results obtained
by Orthogonal Structural Probes are close to those
of Structural Probes. Our reproduced results also
follows the same claim with some minor variations
in the Spearman’s correlation values. We suspect

(a) Original Paper Results

(b) Reproduced Results

Figure 2: Comparison of Spearman Correlations across
layers for joint training

these minor variations account for the randomness
in the code and possibly other trivial hyperparame-
ter tuning which was not mentioned in the original
paper.

4.2 Less Memorization than Structural
Probes

The original paper claims that Orthogonal Struc-
tural Probes are less prone to memorization. We
observe this claim by looking the random tree
structure experimentation. Orthogonal Structural
Probes have a relatively less Spearman’s rank corre-
lation values than the Structural Probes for random
generated trees. This also follows in the findings of
our reproduced results. Although the reproduced
values are not as low as the original paper, we still
see a marked decrease compared to the Structural
Probe’s values.

4.3 BERT Subspace Encoding of different
Structures

The original paper claims that different structures
are encoded in different layers/subspace in the
BERT model. We compare the Spearman’s rank
correlation values for each objective at every layer
in Figure 2. We observe a similar trend in our
reproduced results as in the original paper. The
mid-upper layers contain more syntactic informa-



Objective Structural Probe Orthogonal Probe Orthogonal Probe
(Reproduced)

Dependency Parsing Depth
0.851 ± 0.001
(18th layer)

0.858 ± 0.001
(17th layer)

0.846 ± 0.004

Dependency Parsing Distance
0.843 ± 0.001
(17th layer)

0.842 ± 0.001
(17th layer)

0.834 ± 0.003

Lexical Hypernymy Depth
0.892 ± 0.002

(8th layer)
0.882 ± 0.002

(8th layer)
0.879 ± 0.002

Lexical Hypernymy Distance
0.816 ± 0.008

(6th layer)
0.803 ± 0.005

(6th layer)
0.796 ± 0.004

Position in Sentence Depth
0.989 ± 0.001

(1st layer)
0.983 ± 0.001

(6th layer)
0.975 ± 0.002

Position in Sentence Distance
0.980 ± 0.001

(4th layer)
0.979 ± 0.001

(4th layer)
0.977 ± 0.003

Random Structures Depth
0.206 ± 0.010
(17th layer)

0.136 ± 0.007
(18th layer)

0.154 ± 0.004

Random Structures Distance
0.242 ± 0.005
(19th layer)

0.220 ± 0.006
(18th layer)

0.226 ± 0.003

Table 3: Original paper’s results and our Reproduced Orthogonal Probe Results. Similar to original paper, we ran
our experiments six times to calculate the mean and the standard deviation on the same layer of BERT model as the
original paper.

tion, while the mid-lower layers have more lexical
information. Word positions in a sentence can be
better predicted in the starting layers than the end-
ing layers. This seems reasonable since positional
embedding are added before the first layer in BERT,
as noted in the original paper. Orthogonal struc-
tural probes on the randomly generated trees have
consistently low scores throughout all the layers.

We also observe that our reproduced results in
the Figure 2b are a somewhat erratic in nature. We
suspect that the reason behind this is because the
original work performed multiple runs and aver-
aged them to get smooth trends, whereas we plotted
the results obtained from only a single run.

4.4 Additional Experiments and Ablations

4.4.1 Tree Distance Methods
It seemed interesting to use a different tree dis-
tance methods to train and evaluate the models and
compare those results, hence we tried using L1 ,
L3, and L-infinity distances along with original
L2 distance to approximate tree distances in the
predicted embeddings. The results are shown in
Table 4. To run these experiments, we use the same
hyperparameters as described in Section 3.3.

We observe that L1 and L2 distance performed
better than L3. This is because we calculate the
cube of the vector components, which increases the

weights on outliers; this in turn results in skewed
results. L-infinity only considers the vector com-
ponent with the largest magnitude, which clearly
is a case of classic information loss. This explains
the relatively low score when we approximate tree
distances using L-infinity norm. L1 distance, also
known as Manhattan distance, seems to be a rela-
tively good metric. The difference in scores com-
pared to the L2 distance metric can be explained
by the fact that the hyperparameters were tuned to
optimize for the case of L2 distance metric. If we
tried to tune the hyperparameters for other distance
metrics, we might get some improvement in their
respective scores.

4.4.2 Correlation Metrics
We used three different correlation metrics: Pear-
son, Spearman, and Kendall correlations to evalu-
ate the model. The results for this experiment is
shown in Table 5. We use the same hyperparame-
ters mentioned in Section 3.3 with the L2 distance
metric to approximate the tree distances between
word embeddings.

We know that the Spearman and Kendall correla-
tions work best with ordinal data, whereas Pearson
correlations can be used with non-ordinal data too.
When used with ordinal data (integer tree distances
in our case) Pearson and Spearman correlations
work identically. The same can be observed in the



Tree Distance L1 L2 L3 L-inf
Dependency Parsing
Depth

0.690 0.840 0.632 0.286

Dependency Parsing
Distance

0.711 0.829 0.589 0.253

Lexical Hypernymy
Depth

0.723 0.875 0.596 0.189

Lexical Hypernymy
Distance

0.704 0.790 0.537 0.197

Position in Sentence
Depth

0.788 0.972 0.623 0.376

Position in Sentence
Distance

0.793 0.972 0.602 0.365

Random Structures
Depth

0.170 0.159 0.165 0.134

Random Structures
Distance

0.231 0.228 0.230 0.154

Table 4: Spearman’s Correlation values of Orthogonal
Structural Probe for different tree distance approxima-
tions. The experiments were run once with the same
hyperparameters mentioned in Section 3.3

table results. On the other hand, Kendall Corre-
lation is a test of strength of dependence on two
variables, which considers a lot more factors than
just correlation. Hence we see a difference in the
values compared to Pearson and Spearman correla-
tions. We also observe a consistency in the values
over the eight objectives with respect to each corre-
lation metric.

5 Discussion

The claims within our scope of reproducibility were
all verified by our set of experiments. We verified
that that orthogonal structural probes achieve per-
formance equivalent to the traditional structural
probes. We further verified that orthogonal con-
straints results in less memorization when com-
pared to traditional structural probes. Furthermore,
we verified that the BERT subspace encodings of
different structures were optimally found in differ-
ent layers.

5.1 What was easy

The easiest part about reproducing this paper was
the fact that both the code and the dataset were pub-
licly available. This ensured that we did not deviate
from the model parameters of the original paper,
thus ensuring a fairer attempt at reproduction. In
addition, the original paper directly extended the
work of (Hewitt and Manning, 2019) which pro-
vided an additional reference on structural probes.

Correlation Metric Pearson Spearman Kendall
Dependency Parsing

Depth
0.838 0.840 0.412

Dependency Parsing
Distance

0.825 0.829 0.404

Lexical Hypernymy
Depth

0.852 0.875 0.437

Lexical Hypernymy
Distance

0.757 0.790 0.387

Position in Sentence
Depth

0.948 0.972 0.478

Position in Sentence
Distance

0.964 0.972 0.482

Random Structures
Depth

0.164 0.159 0.160

Random Structures
Distance

0.237 0.228 0.245

Table 5: Evaluating the model with different correlation
methods

5.2 What was difficult

The experiments were run on the Discovery cluster
with a different GPU cluster. Due to the nature of
this change, our replication time was significantly
longer by nearly two-fold. This posed a difficulty in
running the ablations as we were not able to try out
as many different experiments. Furthermore, the
difference in CUDA versions addressed in Section
3.6 required some time for troubleshooting as it
required non-obvious changes to the original code’s
Tensorflow setup.

The original paper mentions the set of hyperpa-
rameters used to train the probe such as learning
rate and other regularization terms. A closer ex-
amination of the original code also revealed addi-
tional hyperparameters such as hidden layer size
and cased/uncased configurations that were trained
with but not specified in the original paper. This
made it difficult to determine which hyperparame-
ters corresponded to the author’s results.

We also had to slightly modify the code to re-
move several hard coded file-paths assumed by the
original authors.

5.3 Recommendations for reproducibility

The original authors did a great job in providing
publicly available code and data with documenta-
tion for reproduction. Save for a few minor dif-
ficulties, we were able to run the complete set of
experiments outlined by the paper in addition to
verifying their findings.

We recommend that any hard coded file-paths be
removed from the code and instead changed into



either command line arguments or configurations
stored in a single file.

We further recommend that the paper specify a
complete set of hyperparameters used to train the
orthogonal structural probe that yielded the final
results detailed in the paper.

6 Communication with original authors

We reached out to the authors of the original work,
informing them of our intent to reproduce their
results and asking if there is anything we should be
aware of when running their code. Unfortunately,
we did not receive a response from the authors.
Nonetheless, we intend to share our results with
them in addition to making them aware of the issues
we encountered when running their published code.
Our hope is to provide them with valuable advise
that may assist in further works.
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